

Journal of Power Sources 109 (2002) 11-16

www.elsevier.com/locate/jpowsour

Studies on electrochemical performance of partially reduced MnO₂ used as cathode for MH–MnO₂ rechargeable battery

Xi Xia^a, Chunxia Zhang^a, Zaiping Guo^{b,*}, H.K. Liu^b, Geoff Walter^b

^aInstitute of Applied Chemistry, Xinjiang University, Xinjiang, PR China ^bInstitute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522, Wollongong, Australia

Received 24 August 2001; accepted 7 January 2002

Abstract

Cyclic voltammograms show that the reversibility of the manganese dioxide (MnO_2) electrode is improved by means of using partially reduced samples. The crystal lattice of the intermediate is transformed by reduction. Formation of the manganous ion is very limited before the electrode potential reaches -0.4 V (versus Hg/HgO), thus the formation of Mn_3O_4 is prevented.

The addition of Ni(OH)₂ to partially reduced samples can further improve the reversibility of the MnO₂ electrode, Ni(OH)₂ delays the $2e^-$ discharge step and decreases the opportunity for the co-existence of Mn(III) and Mn(II) ions and, thereby, prevents the formation of Mn₃O₄. The capacity retention of a cathode of partially reduced MnO₂ (pr-MnO₂) or pr-MnO₂ + Ni(OH)₂ is much better than that of the MnO₂ cathode. This demonstrates the feasibility of using pr-MnO₂ as a cathode material. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Battery partial reduction; Manganese dioxide; Cyclic voltammetry; Nickel hydroxide

1. Introduction

The metal-hydride–manganese dioxide (MH–MnO₂) secondary battery has some advantages, such as long-cycle life, non-toxicity, low self-discharge rate, high performance/cost ratio and non-memory effect [1], although it is a prospective and novel rechargeable battery. In past years, progress in our research on MH–MnO₂ secondary batteries has been made. Now, the life of 3.5 Ah prismatic MH–MnO₂ battery has been raised to over 1400 cycles, while that of AAA cylindrical MH–MnO₂ batteries has been increased to over 450 cycles and the capacity to above 450 mAh [2]. We consider that properties of MH–MnO₂ secondary batteries can also be improved, but this requires an enhancement in the performance of the MnO₂ cathode.

The basic obstacle in advancing of MH–MnO₂ batteries is that the initial charge and discharge states of the cathode and anode are mismatched, i.e. the MnO₂ is in the charged state, but MH is in the discharged state [3]. In past years, we have investigated many methods to overcome this problem, such as adding an appropriate amount of the discharged state material, Ni(OH)₂, to the MnO₂ cathode to moderate the mismatch. We have also used a special, seven-step,

multi-cycle formation method to make the cathode and anode match gradually [4]. The process of formation is too complex, however, and is too equipment dependent. Also, overcharging of the MnO₂ cathode cannot be avoided completely, i.e. small amounts of MnO₂ are overcharged and some Mn(VI) is formed. Therefore, capacity of the MnO₂ is irreversibly lost. To completely avoid the mismatch of the initial charge and discharge states of cathode and anode, we have chosen to use pr-MnO₂ as the cathode material for the MH–MnO₂ battery. Qu [5] has discussed the feasibility of using MnO and MH as production materials for the MnO–MH battery. It was reported that the MnO–MH working voltage was below 1 V, which restricts its application as a single cell, but the system could possibly be used in battery packs or in a bipolar configuration.

We consider that MnO is not suitable as a cathode material because Mn^{2+} cannot be oxidized to MnO_2 completely during the charging process, and the δ -MnO $_2$ produced is easily reduced to Mn_3O_4 , which leads to massive capacity loss [6]. Therefore, we have used pr-MnO $_2$ instead of MnO. In order to raise the working voltage and improve the performance of the cathode, it is still necessary to add Ni(OH) $_2$ to the MnO $_2$ cathode. Based on the results obtained, it is obvious that the reversibility of the MnO $_2$ electrode can be improved by using pr-MnO $_2$ as initial active material. The pr-MnO $_2$ could be promising active material for a MnO $_2$ secondary battery.

^{*} Corresponding author. Tel.: +61-2-4221-3017; fax: +61-2-4221-5731. *E-mail address*: zg04@uow.edu.au (Z. Guo).

2. Experimental

2.1. Preparation of partly reduced MnO₂

 MnO_2 powder (4.35 g IC No. 1) was suspended in distilled water (20 m1) contained in a 100 ml conical flask together with a small magnetic rod. Three such flasks were prepared, with 0.5, 1.0 or 1.5 ml hydrazine hydrate (AR) added to the moderately stirred suspensions, respectively. Each sample was stirred for 30 min, then filtered and rinsed. The powders were dried at 40 °C in air. Three samples with different degrees of reduction were thus obtained.

2.2. Chemical analysis and X-ray diffraction

The degree of reduction was determined by FeSO₄ using a potentiometric titration procedure [7] and found to be MnO_x , where x equals 1.78, 1.67 and 1.56, respectively. The crystal structure of the samples was characterized by powder X-ray diffraction (XRD) using a MIC M18-XCE diffractometer with Cu K α radiation.

2.3. Electrochemical measurements

The working electrode contained 20 mg active material, 20 mg graphite, and 10 mg acetylene black. A platinum wire was used as a counter electrode and Hg/HgO was used as a reference electrode. The electrolyte was aqueous 6 M KOH+15 g l⁻¹ LiOH. The following three types of powders were used as active materials: MnO_x , MnO_2 and MnO_x + $Ni(OH)_2$ (5:1). Cyclic voltammetry measurements were carried out by means of CHI660 electrochemistry workstation, with a scan rate of 2 mV s⁻¹. A charge–discharge test was carried out with an Arbin BT2024 cell test instrument.

2.4. Potentiostatic test

The samples contained 80 mg $MnO_{1.78}$ (or 66.7 mg $MnO_{1.78} + 13.3$ mg $Ni(OH)_2$), 40 mg graphite and 10 mg acetylene black. The tests were carried out after each charge–discharge cycle by using a CHI660 electrochemistry workstation. A potential step ($\Delta E = 15$ mV) was applied to the electrodes after each discharge cycle. The current passing between the counter and working electrodes was measured as a function of time after the potential step (I–t curves). Using current–time plots, the proton diffusion coefficient (D) and the variation of D with cycle number were estimated.

3. Results and discussion

3.1. Comparison of cyclic voltammograms of partly reduced samples of MnO₂

The cyclic voltammogram for IC No. 1 MnO₂ and for a partly reduced sample MnO_{1.78} is shown in Fig. 1a and b,

respectively. It is evident that the voltammograms are different. A broad cathodic peak appears in Fig. 1a over the range -0.2 to -0.5 V on the first cycle, which corresponds to the reactions $MnO_2 \rightarrow MnOOH$, $MnOOH \rightarrow Mn(OH)_2$, and the formation of Mn₃O₄. The peak is divided into two at -0.22 and -0.4 V on the second cycle. The peak areas for the reaction $MnOOH \rightarrow Mn(OH)_2$ and the formation of Mn₃O₄ are larger than the peak area of the first reduction at -0.22 V [6]. The peak current decreases with cycling. There is only one oxidation peak at -0.1 V, which corresponds to the reaction $Mn(OH)_2 \rightarrow \delta$ -MnO₂ [8]. The area of the oxidation peak is smaller than that of reduction peak. This shows that reversibility of the electrode is poor, the main reason being the formation and accumulation of inactive Mn₃O₄. McBreen [6] studied β- and γ-MnO₂ in alkaline electrolyte, and concluded that the overall electrode reaction process was as follows. When δ -MnO₂ was reduced, not only MnOOH was formed, but also Mn(II) could be produced as HMnO₂⁻. The reaction sequence is:

$$\delta\text{-MnO}_2 + \text{H}_2\text{O} + \text{e}^- \rightarrow \text{MnOOH} + \text{OH}^- \tag{1}$$

$$MnOOH + e^- \rightarrow HMnO_2^-$$
 (2)

$$MnOOH + HMnO2- \rightarrow Mn3O4 + H2O + OH-$$
 (3)

There is a peak at -0.2 V for reaction (1) and another peak at -0.4 V for reactions (1) and (2), see Fig. 1. The voltammogram for MnO_{1.78} (Fig. 1b) shows that there is only a couple of oxidation/reduction peaks in the first three cycles. The reduction peak at -0.24 V can be attributed to the homogenous phase reaction of Mn(IV) \rightarrow Mn(III), while oxidation peak at -0.1 V is due to the formation of δ -MnO₂. The peak current increases rapidly with cycling. A weak reduction peak appears at -0.4 V on the fourth cycle. This corresponds to the formation of Mn(OH)₂ and Mn₃O₄. Compared with the behavior of MnO₂ (Fig. 1a), the reduction peak of MnO_{1.78} at -0.4 V appears slowly and weakly, so the reversibility of the electrode is improved.

3.2. Analysis of cyclic voltammograms of samples with different degrees of reduction

Cyclic voltammograms for samples $MnO_{1.78}$, $MnO_{1.67}$ and $MnO_{1.56}$ are presented in Fig. 1b and c, respectively. It is seen that the voltammograms for $MnO_{1.78}$ and $MnO_{1.67}$ are very similar. Strong peaks appear at -0.24 V and correspond to the homogeneous phase reaction of $Mn(IV) \rightarrow Mn(III)$ [6]. The peaks at -0.37 and -0.34 V in both curves are attributed to the formation of Mn_3O_4 and the heterogeneous phase reaction of δ - $MnO_2 \rightarrow Mn(OH)_2$. Moreover, the peak current of the two samples increases rapidly with cycling. The cyclic voltammograms of $MnO_{1.56}$ (Fig. 1d) are different from those for $MnO_{1.78}$ and $MnO_{1.67}$. Two reduction peaks at -0.24 and -0.6 V appear on the first cycle and result from the reactions of $MnO_2 \rightarrow MnOOH$ and $MnOOH \rightarrow Mn(OH)_2$. A strong peak for the formation of Mn_3O_4 at -0.38 V appears on subsequent cycles. The peak

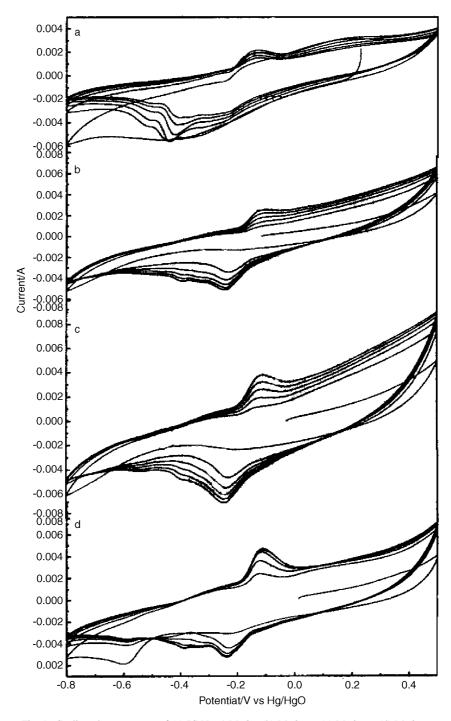


Fig. 1. Cyclic voltammograms of (a) IC No. 1 MnO_2 ; (b) $MnO_{1.78}$; (c) $MnO_{1.67}$; (d) $MnO_{1.56}$.

at -0.6 V, corresponding to MnOOH \rightarrow Mn(OH)₂, decreases rapidly with subsequent cycles. This is the result of the formation of Mn₃O₄ which consumes part of the MnOOH.

The XRD patterns of the different pr-MnO₂ samples are compared in Fig. 2. The differences are caused by different degrees of reduction. The degree of reduction of MnO_{1.56} is so high that the crystal lattice of MnO₂ is cracked and Mn₃O₄ forms more rapidly. It can be inferred that the partial reduction of MnO₂ should be controlled in the range where the crystal lattice of MnO₂ is not cracked.

There is much controversy about the limit of crystal lattice cracks for MnO_2 . Some researchers think it is $MnO_{1.75}$, but others believe that it should be $MnO_{1.60}$ or $MnO_{1.50}$ [9–12]. Maskell et al. [13] studied the chemical and electrochemical reduction of MnO_2 by means of XRD techniques and considered that electrons which entered the lattice were non-localized in two adjacent Mn(IV) ions between $MnO_{1.75}$ and MnO_2 , but localized between $MnO_{1.75}$ and $MnO_{1.5}$, and every electron interacts with a Mn(IV) cation to form an Mn(III) ion. These experiments indicate that, for

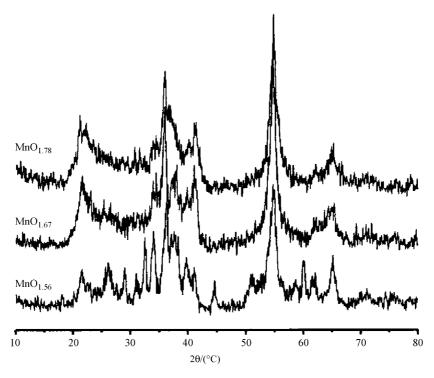


Fig. 2. XRD patterns for (a) MnO_{1.56}; (b) MnO_{1.67}; (c) MnO_{1.78}.

different crystal lattices of MnO_2 , the reduction reactions from MnO_2 to $MnO_{1.5}$ are different. Fernerds et al. [14] reported that the reduction of $\beta\text{-MnO}_2$ was a homogeneous phase reaction in a very narrow region (from MnO_2 to $MnO_{1.96}$). On the other hand, Bell and Huber [10] concluded that the homogeneous phase reduction reaction was probably from $MnO_{1.8}$ to $MnO_{1.6}$. Kazawa and Powers [11] studied $\gamma\text{-MnO}_2$ prepared by heat treatment and proposed that the reaction from MnO_2 to $MnO_{1.5}$ involved a homogeneous phase reduction. Fernerds [14] suggested that homogeneous phase reduction of $\alpha\text{-MnO}_2$ could only occur until the degree of reduction reached $MnO_{1.82}$, and

the homogeneous reaction increased with increase of the γ -MnO₂ microstructure in α -MnO₂. From the results of reported here, we conclude that the limit of crystal lattice cracking is MnO_{1.60} in the reduction reaction for γ -MnO₂.

3.3. Influence of $Ni(OH)_2$ as additive

A cyclic voltammogram for $MnO_{1.67}$ with small additions of $Ni(OH)_2$ is shown in Fig. 3. Compared with the voltammogram for $MnO_{1.67}$ alone (Fig. 1c), the peak currents of the electrode with $Ni(OH)_2$ are increased. Three reduction peaks appear at 0.25, -0.24 and -0.4 V, while only one oxidation

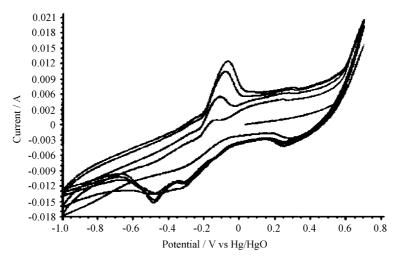


Fig. 3. Cyclic voltammogram of MnO_{1.67} with added Ni(OH)₂.

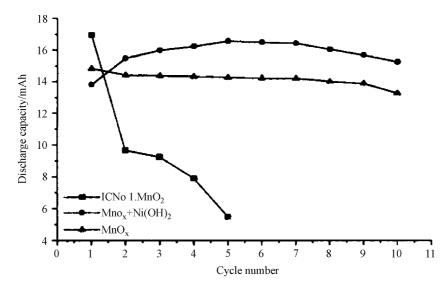


Fig. 4. Variation of discharge capacity with cycle number for given batteries.

peak is present at $\sim\!-0.1$ V. These four peaks correspond to the reduction of NiOOH \rightarrow Ni(OH)2, Mn(IV) \rightarrow Mn(III), Mn(III) \rightarrow Mn(II) and the oxidation of Mn(II) \rightarrow δ -MnO2, respectively. The oxidation peaks for Ni(OH)2 \rightarrow NiOOH do not appear. This is probably because the scanning rate is so fast that evolution of oxygen begins at 0.55 V. The area of the oxidation peak at -0.1 V is roughly the same as the total area of reduction peaks at -0.24 and -0.4 V, which suggests that the reversibility of MnO2 is improved. This is mainly because the formation peak for Mn3O4 does not appear at -0.4 V. Therefore, it can be concluded that the addition of Ni(OH)2 further prevents the formation of Mn3O4.

3.4. Results and discussion of charge-discharge tests

The results of charge–discharge tests are presented in Fig. 4. As far as IC No. 1 MnO₂ is concerned, the discharge capacity on the second cycle is 51% of that on the first cycle. For the partly reduced sample, however, the discharge capacity on the fifth and tenth cycle is 90 and 89% of that on the first cycle, respectively. For the pr-MnO₂ sample with additions of Ni(OH)₂, the capacity reaches a maximum at the fifth cycle, and the discharge capacity on the tenth cycle is 92% of that on the fifth cycle. These results are consistent with those obtained from cyclic voltammetric measurements (V.S.). (Note, since the test cells were not sealed during cycling, the cycle life of electrodes are not too good, but under these conditions, the test results are comparable and reliable.)

Using the double-plane model [15], I–t curves were used to calculate the H $^+$ diffusion coefficients ($D_{\rm H}^+$). The data in Fig. 5 shows that the $D_{\rm H}^+$ in MnO_{1.78} and MnO_{1.78} + Ni(OH) $_2$ electrodes do not decrease with cycle number. The first point in both curves is obtained from the electrode before the charge–discharging test. Basically, the values of $D_{\rm H}^+$ show either a small increase or no change with cycling.

The $D_{\rm H^+}$ for ${\rm MnO_{1.78} + Ni(OH)_2}$ electrode is higher than that for the ${\rm MnO_{1.78}}$ electrode. This may be due to the fact that the proton diffusion coefficient in Ni(OH)₂ is much higher than that in ${\rm MnO_2}$. Based on the data in Fig. 5, it can be concluded that the crystal structure of pr-MnO₂ is not cracked during cycling, irrespective of whether Ni(OH)₂ is added or not. Thus, the tunnel structure for ${\rm MnO_2}$ can be maintained and the ability of proton diffusion does not decrease. On the other hand, the pr-MnO₂ samples have more surface OH radicals compared with ${\rm MnO_2}$. The amount of OH radicals is related to the amount of ${\rm Mn^{3+}}$ in ${\rm MnO_2}$. ${\rm Mn^{3+}}$ can reduce the Fermi energy of ${\rm MnO_2}$ and relax the bond of ${\rm Mn-O}$, which decreases the hindrance for proton diffusing along C-axis. Therefore, the values of $D_{\rm H^+}$ do not decrease and the activity of the electrode is improved.

3.5. Analysis of reaction mechanism

There are different views on the nature of the reactions for the MnO_2 electrochemical redox process. In general, it is

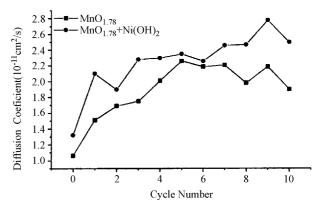


Fig. 5. Proton diffusion coefficient on each cycle of charge and discharge.

thought that the product of the first electron reduction is MnOOH, and that of the second step is Mn(OH)₂, with formation of Mn₃O₄ probably also appearing in the reaction sequence. There is no clear consensus on whether δ -, γ -, α -, or β -MnOOH is the intermediate reaction product [6,16]. We consider that partial reduction influences the crystal lattice of the intermediate product. Different crystal lattices for MnOOH have different free energies of formation and thereby, the potential of the reaction MnOOH \rightarrow Mn(II) can change [6]. A less negative potential for the reaction MnOOH \rightarrow Mn(II) results from partial reduction. Therefore, the formation of the manganous ion is very limited before the scanning electrode potential arrives at -0.4 V (versus Hg/HgO), so that the following reaction cannot occur [17]:

$$Mn(II)(aq) + 2Mn(III)(aq) \rightarrow Mn_3O_4(s)$$
 (4)

Therefore, the formation of Mn_3O_4 can be prevented. For a similar reason, $Ni(OH)_2$ delays the $2e^-$ discharge of MnO_2 [1] and decreases the opportunity for the co-existence of soluble Mn(III) ions and Mn(II) ions. Therefore, $Ni(OH)_2$ additive also prevents the formation of Mn_3O_4 .

4. Conclusions

Partially reduced samples of MnO₂ have been prepared by using hydrazine hydrate as a reducing reagent. Cyclic voltammograms show that the reversibility of the MnO₂ electrode is improved by means of using such samples. The rate and amount of formation of the electrochemically inactive Mn₃O₄ during the scanning procedure is less than that found with MnO₂. The partial reduction should not destroy the crystal lattice of MnO₂, i.e. the degree of

reduction should not be less than $MnO_{1.60}$. The improved performance of partially reduced MnO_2 is due to transformation of the crystal lattice of the intermediate reaction product. The formation of manganous ions is very limited before the scanning electrode potential arrives at -0.4 V (versus Hg/HgO) and thus the formation of Mn_3O_4 , is prevented.

The addition of $Ni(OH)_2$ to partially reduced MnO_2 further improves the reversibility and performance of the MnO_2 electrode. $Ni(OH)_2$ can delay the $2e^-$ discharge and decrease the opportunity for the co-existence of Mn(III) ions and Mn(II) ions, and prevent the formation of Mn_3O_4 .

References

- [1] X. Xia, Z. Guo, J. Electrochem. Soc. 144 (1997) L213.
- [2] Z. Guo, X. Xia, J. Appl. Sci. 18 (2000) 179 (in Chinese).
- [3] Z. Guo, X. Xia, J. Appl. Electrochem. 29 (1999) 1417.
- [4] Z. Guo, X. Xia, Dianchi (Battery Bimonthly) 27 (1997) 54 (in Chinese).
- [5] D. Qu, J. Appl. Electrochem. 29 (1999) 511.
- [6] J. McBreen, Electrochim. Acta 20 (1975) 211.
- [7] Iu.K. Kordesch (Ed.), Batteries, Vol. 1, JEC Press, Cleveland, OH, 1975, p. 488.
- [8] X. Xia, D. Shu, Dianchi (Battery Bimonthly) 23 (1993) 51 (in Chinese).
- [9] A. Kozawa, R.A. Powers, J. Electrochem. Soc. 113 (1966) 870.
- [10] G.S. Bell, K. Huber, J. Electrochem. Soc. 111 (1964) 1.
- [11] A. Kazawa, R.A. Powers, Electrochem. Technol. 114 (1967) 5535.
- [12] J.P. Gabano, B. Morighat, B.F. Laurent, Power Sources 3 (1966) 49.
- [13] W.C. Maskell, J.A.E. Shaw, F.L. Tye, Electrochim. Acta 26 (1981) 1403.
- [14] J.B. Fernerds, B.D. Resai, V.N. Karral Palal, Electochim. Acta 29 (1984) 189.
- [15] H. Zhang, Z. Chen, X. Xia, J. Electrochem. Soc. 13 (1989) 2771.
- [16] X. Xia, Q. Li, Dianchi (Battery Bimonthly) 22 (1992) 177 (in Chinese).
- [17] M. Bode, C. Cachet, S. Bach, J.P. PeriraRamos, J.C. Glnoux, L.T. Yu, J. Electrochem. Soc. 144 (1997) 792.